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Improved estimation of age composition by accounting for
spatiotemporal variability in somatic growth
Giancarlo M. Correa, Lorenzo Ciannelli, Lewis A.K. Barnett, Stan Kotwicki, and Claudio Fuentes

Abstract: Age composition is defined as the proportion of a fish population belonging to each age class and is an informative
input to stock assessment models. Variations in somatic growth rates may lead to larger errors in age composition estimates. To
reduce this source of error, we compared the performance of four methods for estimating age compositions of a simulated fish
population: two methods based on age–length keys (ALK, pooled and annual) and two model-based approaches (generalized
additive models (GAMs) and continuation ratio logits (CRLs)). CRL was the most robust and precise method, followed by annual
ALKs, particularly when significant growth variability was present. We applied these methods to survey age subsample data for
Pacific cod (Gadus macrocephalus) in the eastern Bering Sea, estimating age compositions that were then incorporated in its stock
assessment model. The model that included age compositions estimated by CRL displayed the highest consistency with other
data in the model. CRL approach has utility for estimating age compositions employed in stock assessment models, especially
when substantial variation in somatic growth is present.

Résumé : La composition selon l’âge désigne la proportion d’une population de poissons appartenant à chaque classe d’âge et
constitue un intrant informatif dans les modèles d’évaluation de stocks. Des variations des taux de croissance somatique peuvent
accroître l’erreur associée aux estimations de la composition selon l’âge. Pour réduire cette source d’erreur, nous avons comparé
la performance de quatre méthodes d’estimation de la composition selon l’âge d’une population de poissons simulée, dont deux
méthodes basées sur des clés âge–longueur (CAL, regroupées et annuelles) et deux approches basées sur des modèles (modèles
additifs généralisés, ou MAGs, et modèles logistiques des cotes de continuité, ou MLCCs). La méthode MLCC s’avère la plus
robuste et précise, suivie des CAL annuelles, particulièrement quand une variabilité significative de la croissance est présente.
Nous avons appliqué ces méthodes à des données d’évaluation sous-échantillonnées pour l’âge pour la morue du Pacifique (Gadus
macrocephalus) dans la mer de Behring orientale, pour estimer des compositions selon l’âge qui ont ensuite été incorporées dans
le modèle d’évaluation du stock de l’espèce. Le modèle qui comprend les compositions selon l’âge estimées par MLCC présente
la plus grande cohérence avec d’autres données dans le modèle. L’approche MLCC est utile pour estimer les compositions selon
l’âge employées dans les modèles d’évaluation de stocks, particulièrement en présence de variations considérables de la
croissance somatique. [Traduit par la Rédaction]

Introduction
Marine fish populations inhabit a changing environment, where

oceanographic, ecological, and fishery drivers affect vital rates, in-
cluding somatic growth, sexual maturation, natural mortality, and
spatial distribution (Gertseva et al. 2017; Thorson et al. 2015).
Numerous studies have documented substantial variability in ma-
rine fish somatic growth rates related to environmental, commu-
nity, and density-dependent factors (Baudron et al. 2014; Puerta
et al. 2019b; Stawitz et al. 2015; Thorson and Minte-Vera 2016). For
instance, fish growth rates are positively correlated with temper-
ature (Gislason et al. 2010) and prey availability (Gale et al. 2013),
but there are also top-down regulators such as size-selective pre-
dation mortality (Aikio et al. 2013; Sinclair et al. 2002). Variation in
growth is an important driver of population fluctuations (Stawitz
and Essington 2019) and has implications for the assessment and
ecological studies of fish stocks (Helser and Brodziak 1998; Lee
et al. 2018; Punt et al. 2015; Thorson et al. 2017, 2015). Growth
variability can also affect multiple data types used in stock assess-
ment models, such as age compositions, an informative input for

recruitment, natural mortality, and population structure (Chen
et al. 2003; Magnusson and Hilborn 2007; Ono et al. 2015).

Age composition is defined as the proportions of a population
belonging to each age class, and it can be estimated from fishery-
independent and -dependent sources, typically by a two-stage
sampling. The first stage (length subsampling) collects length in-
formation on a random sample obtained from the total catch in a
haul. In the second stage (age subsampling), individuals are sub-
sampled from the length subsample for aging (Quinn and Deriso
1999). From this age subsample, ages are estimated through labo-
ratory analysis, by counting growth increments deposited with
regular periodicity in the otoliths or other hard parts. Using this
information, fisheries scientists may construct a classic age–
length key (ALK; Fridriksson 1934) matrix describing the probabil-
ity of being a specific age at a given length and use this to assign
age to individual fish in the length subsample (age assignment).
Finally, using information in haul catches, length subsample, and
an ALK, one may estimate abundance-at-age per haul and then the
age composition of the population using a design-based proce-
dure (Stewart and Hamel 2014; Thorson and Haltuch 2019).
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Methods used to estimate abundances-at-age can have effects
on estimates of age composition. In recent years, some research-
ers have opted to use alternative approaches such as state-of-art
statistical models to standardize the abundance estimates of each
age class. For example, Thorson and Haltuch (2019) developed a
spatiotemporal statistical model to estimate abundance-at-age,
resulting in improved compositional data that led to better-fitted
stock assessment models. Likewise, Berg et al. (2014) applied a
generalized additive model (GAM) to estimate an abundance in-
dex for each age for three species in the North Sea. These stan-
dardization techniques still require an age assignment method
for individuals in the length subsample, and ALKs are normally
preferred (Gulland and Rosenberg 1992). However, scientists
should be cautious when constructing an ALK, since it may be
influenced by spatial and temporal variation in vital rates (Ailloud
and Hoenig 2019), including somatic growth. These effects, if ig-
nored, can then lead to suboptimal age composition estimates
(Aanes and Vølstad 2015; Gerritsen et al. 2006).

Recent studies applied model-based approaches for age assign-
ment as an alternative to ALKs. Kvist et al. (2000) used continua-
tion ratio logits (CRLs), a type of logistic model for an ordinal
response (e.g., age; Agresti 2010), with generalized linear models
(GLMs) to analyze variations of the age proportions of lesser sand-
eel (Ammodytes marinus) across space in the North Sea. Subsequent
studies focused on estimating age compositions, smooth length
distributions, and spatial differences in ALKs using CRL and GLM
for estimation, incorporating spatial differences through a strati-
fication procedure (Gerritsen et al. 2006; Rindorf and Lewy 2001;
Stari et al. 2010). Berg and Kristensen (2012) tried to overcome the
need for a spatial stratification using GAM for fitting CRL to model
age proportions as a smooth function of length and geographical
position. Finally, other approaches have modeled age as the re-
sponse variable directly using GLM or GAM (Ochwada et al. 2008;
Puerta et al. 2019b, 2019a). However, the performance of these
various procedures for age assignment has rarely been explored.

The primary goal of this study is to evaluate the performance of
classic ALKs and two model-based methods to estimate age com-
positions, focusing on the age assignment step of this procedure.
We are especially interested in their performance when used for a
fish population with substantial spatiotemporal variability in so-
matic growth. The two model-based methods tested are GAM (as-
suming age as the response variable) and CRL (using GAM for
estimation). We implement a simulation experiment that as-
sumes known (true) age composition and can, therefore, quantify
the performance of each method with respect to the “true” values.
Moreover, we assess their robustness in two population scenarios:
one with and one without spatiotemporal variability in somatic
growth. Our secondary goal is to perform a system-based test to
assess the consistency of age compositions estimated by the eval-
uated methods with other data used in a stock assessment model.
For this, we use survey data for Pacific cod (Gadus macrocephalus) in
the eastern Bering Sea (EBS) as a case study because there is evi-
dence that this stock has experienced spatiotemporal variation in
somatic growth rates in recent years (Ciannelli et al. 2020; Puerta
et al. 2019a, 2019b). We hypothesize that more precise age compo-
sitions may be more consistent with the model structure and
therefore lead to better fits by the model.

This research contributes to the improvement of age assign-
ment and age composition estimation of fish populations that can
be included in stock assessment models or applied to other eco-
logical studies in which age structure of a population is required,
especially for cases with significant spatiotemporal variability in
somatic growth.

Methods

Simulation experiment
We create an operating model to simulate the dynamics of an

age-structured fish population with spatiotemporal variability in
somatic growth. Although we base our simulation on the growth
variability and dynamics of Pacific cod in the EBS, our operating
model can be used to test the dynamics of other species in the
future. A brief description of the EBS and the Pacific cod stock can
be found in Appendix A.

Somatic growth variability
Somatic growth variability is simulated by incorporating two

main sources of variation:

1. Variance of size-at-age in a single year. We assume two processes
that impact this variance. First, there is a contribution of pro-
cesses that generate different sizes for a given age (e.g., differ-
ences in date of birth, size-selective predation) with similar
effects across space and that are present in all fish popula-
tions. Second, some fish stocks experience spatial differences
in growth triggered by variable conditions (e.g., environment
or prey composition) across space (Adams et al. 2018; Ciannelli
et al. 2020; Gertseva et al. 2017). The latter source creates sys-
tematic spatial trends in growth rates and, consequently, in-
creases the variance of size-at-age at the population scale
(Fig. 1).

2. Growth variability across multiple years. We assume that growth
rate (k, the growth coefficient of the von Bertalanffy growth
function; see below) varies over time, resulting in temporal
changes in the mean size-at-age. This has been observed for
many stocks, where changing temperature or ecological re-
gimes produced changes in growth rates (Ciannelli et al. 2020;
Hernandez-Miranda and Ojeda 2006; Hunter et al. 2019).

We consider two spatiotemporal scenarios for somatic growth:
(i) no spatial – no temporal (No S – No T) scenario, or control
scenario, where only the first source of variance of size-at-age in a
single year (i.e., processes with similar effects across space) is
considered and there is no temporal variability; and (ii) spatial–
temporal (S–T) scenario, where we also include systematic spatial
trends and temporal growth variability.

Spatially explicit age-structured population model
We simulate abundance at age a, location s, and year y (Na,s,y)

throughout an area composed of 9376 cells, each 11 km by 11 km:

Na,s,y � �Rs,y if a � 0
Na�1,s,y�1exp(�S1aF � M) if a � 1

where a � {0, 1, …, A}, M is the natural mortality rate, F is the fishing
mortality rate, S1a is the fishery selectivity-at-age. Recruitment varies
in space and time: Rs,y � exp��Ny

� �Ns
� �Ns,y

�, where �Ns
and �Ns,y

are
the spatial and spatiotemporal variation in log-density, respec-
tively. Then, recruit density by year is �Ny

� log�Ry/Area�, where
Area is the study area (km2) and annual recruitment is Ry �

R0 × exp�Normal��	R
2/2, 	R

2��, where R0 is the average recruitment
for all simulated years, 	R

2 the variance of recruitment, and we use
conventional bias correction for the lognormal distribution.

The spatial and spatiotemporal terms, �Ns
and �Ns,y

, are simulated
from a Gaussian random field using the R package “RandomFields”
(Schlather et al. 2015). We use an isotropic Matern covariance func-
tion and specify a spatial scale of 85 km for all simulated spatial
fields, where the spatial and spatiotemporal terms have a standard
deviation of 0.5 and 0.2, respectively. We vary these parameter values
to evaluate their effects on results.
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The mean length-at-age (La,s,y) for the initial population is calcu-
lated as

La,s,y � L∞{1 � exp[�ks,y(a � t0)]}

where L∞ is the asymptotic length, t0 is a constant representing an
intercept that adjusts the model along a time axis, and ks,y is the
growth coefficient simulated as

ks,y � k � �ks
� 
ky

where k is the initial growth parameter, �ks
is related to the sys-

tematic spatial component of variance in size-at-age in a given
year, and 
ky

is related to the temporal variability. These two terms
are equal to zero for the No S – No T scenario. For the S–T scenario, �ks
is a simulated spatial field using the R package “gstat” (Pebesma
2004), considering a Matern model and a linear increasing trend
from the inner to the outer region (Fig. 2). 
ky

follows a linear trend
from the first to the last simulated year. Finally, �ks

and 
ky
values are

normalized between –0.03 and 0.03 to create the desired variability
in growth.

Then, somatic growth in time is modeled as follows (Methot and
Wetzel 2013):

L̃a,s,y � La,s,y � (La,s,y � L∞)[exp(�ks,y�y) � 1]

where �y is the fraction of the year when the survey takes place,
and L̃a,s,y is the mean length-at-age at the survey time.

The numbers-at-age are distributed across the defined length
bins (the length bin width is 1 cm) following a normal distribution.
The proportion in length bin l for age a (�l,a,s,y) is calculated as

Fig. 1. Simulated spatial variability scenarios exemplified by frequency distributions of lengths. (1) No S: for a given age, the variability of
length-at-age (left panel) is composed of processes with similar effects across space. (2) S: for a given age, the variability of length-at-age (right
panel) is, in addition to (1), composed by large-scale processes that produce areas that favor slow or fast growth rates. Lower panels (grey
curves) show the length-at-age variability at the population scale. If 	a increases, the amplitude of the curves also increases in the four panels.
[Colour online.]

Fig. 2. Simulated survey in the eastern Bering Sea: 332 sampling
stations (black dots) and simulated spatial field of variability for
somatic growth, �ks

(colour scale). We used the R package “mapdata”
(Becker et al. 2018) to include the map of Alaska. [Colour online.]
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�l,a,s,y �

�Lmin
′ � L̃a,s,y

	a,s,y
� for l � 1

�Ll�1
′ � L̃a,s,y

	a,s,y
� � �Ll

′ � L̃a,s,y

	a,s,y
� for 1 � l � L

1 � �Lmax
′ � La,s,y

	a,s,y
� for l � L

where  is the standard normal cumulative density function, Ll
′ is

the lower limit of length l, Lmin
′ is the lower limit of the smallest

length bin, Lmax
′ is the lower limit of the largest bin, L is the index

of largest length bin, and 	a,s,y is the standard deviation of the
length of a fish of age a and it is calculated as

	a,s,y � 	0 � � L̃a,s,y � L0

L∞ � L0
�(	A � 	0)

where 	0 and 	A are the standard deviation for length at age 0 and
A, respectively, and L0 is the length at age 0. 	a is related to the
variance of size-at-age in a single year caused by processes with
similar effects across space. Moreover, to evaluate the effects of 	0
and 	A on our results, we also compare two cases: low and high
overlap in length distributions among ages (“low-	a” and “high-
	a”, respectively; refer to the online Supplementary material,
Fig. S11).

Using the spatiotemporal information of the simulated popula-
tion, we simulate a survey similar to the Continental Shelf Bottom
Trawl Survey of Groundfish and Invertebrate Resources performed
in the EBS (Fig. 2; Conner and Lauth 2017) to obtain haul catches and
length and age subsamples. A detailed description of this process can
be found in Appendix B and a summary of the parameters used in
this simulation experiment in Table 1.

Age composition estimation
Using the simulated survey data, we estimate age compositions

following the next three steps, and, for simplicity, we keep the

1Supplementary data are available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/cjfas-2020-0166.

Table 1. Names, symbols, and values of indices, variables, and parameters used in the
simulation.

Name Symbol Value

Indices
Age a
Year y
Length bin (cm) l
Grid s
Sampling station i
Replicate n
Individual sampled in the age subsample j

Variables
Abundance-at-age Na

Abundance-at-length-at-age Nl,a
Recruitment R
Spatial variation in recruitment density �N

Spatiotemporal variation in recruitment density �N

Recruitment density in log space �N

Spatial variation in growth coefficient �k

Temporal variation in growth coefficient �k

Length-at-age La

Length-at-age at the time of a survey L̃a
Proportion in length bin l for age a �l,a
Standard deviation in length for age a 	a

Simulated encounter probability Pl,a

Simulated positive catch rates cl,a

Parameters
Maximum age (years) A 20
Maximum length (cm) L 120
Fishing mortality F 0.46
Natural morality M 0.34
Average recruitment R0 4.51e08
Standard deviation in recruitment 	R 0.66
Initial growth coefficient k 0.1376
Asymptotic length (cm) L∞ 118.6
Adjustment parameter in growth equation t0 –0.168
Lower limit of the smallest length bin (cm) Lmin

′ 0.5
Lower limit of the largest length bin (cm) Lmax

′ 119.5
Standard deviation in length for age 0 	0 0.8–3.5a

Standard deviation in length for age A 	A 3–9.5a

Length at 50% of retention of the survey selectivity curve (cm) S50% 18
Slope of the survey age selectivity curve Sslope 1
Fraction of a year when survey takes place �y 0.25
Area swept (km2) w 0.05
Dispersion for error term for positive catches rates 	c 0.7

aValues for the low-	a and high-	a cases, respectively.

Correa et al. 1813

Published by NRC Research Press

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

N
O

A
A

 C
E

N
T

R
A

L
 o

n 
03

/0
3/

21
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 

http://nrcresearchpress.com/doi/suppl/10.1139/cjfas-2020-0166


haul or station subscript i but omit the year subscript y, but note
that these calculations are performed for each year.

First expansion
To expand the number of individuals in the length subsample

(ci) to the total haul catch (c̃i), we calculate the subsampling inten-
sity: �i � c̃i/ci. Then, the abundance-at-length (ĉ l,i) is

ĉ l,i �
c̃ l,i

�i

Estimation of abundance-at-age per haul
First, a brief introduction to ALKs is presented. An ALK is con-

structed from the age subsample where body length and aging
structures have been collected. Suppose the ages to estimate are
a = J, …, A*, where J and A* represent the minimum and maximum
estimable age, respectively, and the probability that a fish is age a
given that it belongs to a length bin l is ql,a, l = 1, …, L (Kimura 1977):

	
a

ql,a � 1

and where each ql,a is an element of the ALK matrix. Combining
information from an ALK with abundance-at-length for station i
(ĉ l,i), we can obtain the abundance-at-age (ĉa,i):

(1) 	 l
ĉ l,iql,a � ĉa,i

As we observe, an ALK distributes ĉ l,i among different ages to
calculate ĉa,i. In this study, we evaluate alternative approaches to
estimate ĉa,i from ĉ l,i, where age assignment plays a critical step.
We use information from the age subsample to compare the fol-
lowing methods:

Pooled ALK
When the sample size is low, an ALK typically lacks age infor-

mation for several length bins and a “pooled” ALK, composed of
information from multiple years, is preferred (e.g., Carpi et al.
2015; Gulland and Rosenberg 1992). This method reproduces this
approach in an extreme case, pooling data from all simulated
years to construct a unique ALK that is used to calculate ĉa,i for all
years. To reproduce a low sample size scenario, we consider
uniquely for this method that the number of age subsampling
stations is 50% (166) of the standard number (332). Finally, ĉa,i is
estimated using eq. 1.

Annual ALK
For this method, ĉa,i is estimated using a year-specific or annual

ALK using eq. 1.

GAMs
For this method, we assume

(2) g[E(aj)] � � � s1(lj) � s2(lonj, latj) � �j

where g is the log-link function, aj is the age of a sampled individ-
ual j and follows a Tweedie distribution (but we also tested a
Gaussian distribution as assumed in previous studies; Ochwada
et al. 2008; Puerta et al. 2019a, 2019b), (lon, lat) represents the
geographical coordinates where an individual was sampled, s1 and
s2 represent the smooth functions (thin plate regression splines)
for length and geographic location (both used 10 as the dimension
of the basis to represent the smooth term), respectively, and �j is
the error term.

Then, using the information in the length subsample, we pre-
dict ages to be assigned to individuals. Since these predicted ages

are continuous, we use a simple rounding to obtain the final
predicted ages (â). Finally, ĉa,i � ĉ l,i, where a � â.

CRL models
CRLs are a type of model for ordered categorical responses (e.g.,

ages). We implement “A* – J” CRL models using GAM for estima-
tion. It follows that the conditional probability of a fish being age
a given that it is at least that age is equal to

�a � P(Y � a|Y ≥ a) �
pa

pa � …�pA∗
, a � J…A* � 1

where �a follows a binomial distribution and

g�E��aj�� � �a � �alj � sa�lonj, latj� � �aj

where g is the logit link function, and j is an individual sampled.
Then, we calculate the estimated unconditional probabilities p̃a
from the conditional probabilities �̂a (Rindorf and Lewy 2001):

(3)
p̃J � �̂J

p̃a � �̂a�1 � 	j�J

a�1
p̃j� � �̂a 
j�J

a�1
(1 � �̂j), a � J

For more details about CRL see Berg and Kristensen (2012) and
Kvist et al. (2000). After the model implementation, we predict
proportions by age class using the information in the length sub-
sample. Finally, ĉ l,i is distributed among these predicted propor-
tions to calculate ĉa,i. We used the mgcv package in R (Wood 2017)
to implement these model-based approaches (GAM and CRL). We
also evaluated the exclusion of location (lonj, latj) for these model-
based approaches for the No S – No T scenario, since it might be
unnecessary.

See Fig. 3 and Fig. S21 for an example of how these four methods
represent the transition from length to age (i.e., age assignment).
Moreover, for comparison purposes, they assume ages 1 and 8 as
the first and maximum estimable ages, respectively.

Second expansion
We use a design-based approach to estimate the age compo-

sition of the entire population (p̂a) (Stewart and Hamel 2014;
Wakabayashi et al. 1985), expanding ĉa,i to the total area sam-
pled by the survey:

p̂a �
	i

ĉa,i

	i 	a
ĉa,i

Performance metrics
We perform 200 replicates (Nrep) and assess the performance of

each method comparing the estimated (p̂a,y) using simulated sur-
vey data and true (pa,y) age composition of the population for the
two evaluated scenarios.

Mean square error (MSE): used to give information on the accu-
racy of proportion estimates:

MSEa,y �
1

Nrep
	
n�1

Nrep

(p̂a,y,n � pa,y,n)
2

where n represents a replicate. We can also average over years
(MSEyear), ages (MSEage), and years and ages (MSEtotal).

1814 Can. J. Fish. Aquat. Sci. Vol. 77, 2020
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Mean relative error (MRE): used to give information on the bias of
proportion estimates:

MREa,y �
1

Nrep
	
n�1

Nrep

�p̂a,y,j � pa,y,n

pa,y,j
� × 100%

MREa,y < 0 or MREa,y > 0 values mean that the method underesti-
mates or overestimates that proportion, respectively. As done for
MSE, we can also average over years (MREyear), ages (MREage), and
years and ages (MREtotal).

The code to perform the simulation experiment and the CRL
method can be found in https://www.github.com/gmoroncorrea/
STageCompsEstimation.

Stock assessment model
We perform a system-based testing (Chang et al. 2017; Hinton

and Maunder 2003) to investigate the consistency (compatibility)
of age compositions estimated by the four aforementioned meth-
ods with regard to the other data sources (e.g., catch-per-unit ef-
fort (CPUE), length compositions) in the latest stock assessment
model for the Pacific cod in the EBS. First, we estimate age com-
positions for this species by method and considering survey data
from 1994 to 2016 (Conner and Lauth 2017). We compare these
estimates and then include them in the stock assessment model,
therefore having four models that differ exclusively in the age
composition data (hereinafter referred to as SS pooled ALK, SS
annual ALK, SS GAM, and SS CRL). We use the 2018 Pacific cod
stock assessment model in the EBS configuration (Thompson et al.
2018) implemented in the Stock Synthesis (SS) modeling frame-
work (Methot and Wetzel 2013). This model has been thoroughly
evaluated, and therefore we assume that its structure is correctly
specified. Data inputs used by this model are fishery landings,
survey abundance, fishery length composition, and survey age
composition data (Fig. S31). We use the Francis data weighting
method (Francis 2011) to tune the input sample size of composi-
tional data. To evaluate the consistency of age compositions with
the model structure and other data, we compare model fits using

the calculated total and by component negative log-likelihood
(NLL) by the stock assessment models. We also compare spawning
biomass (SSB) and recruitment estimates to examine how differ-
ent age compositions data sets influence these crucial time series.

We used the R software environment (R Core Team 2019) to
perform the analyses of this study and the R package “ggplot2”
(Wickham 2016) to generate the figures.

Results
The CRL method was the most robust (unbiased) method to

estimate age composition in our simulation experiment across
scenarios, and annual ALKs ranked second. Also, the stock assess-
ment model that included age composition estimated by CRL dis-
played the highest consistency with other data.

Simulation experiment
The simulated population and survey successfully imitated the

spatiotemporal variability in size-at-age observed for the Pacific
cod in the EBS (Figs. S4–S91; see also figures 2 and 5 in Ciannelli
et al. 2020). Simulated haul catches ranged from 0 to �300 indi-
viduals, lengths in the length subsamples from 12 to 110 cm, and
ages in the age subsamples from 1 to 16. Different parameters to
simulate the spatial and spatiotemporal terms (�Ns

and �Ns,y
) did

not vary our results; therefore, we present results using the pa-
rameter values as specified above. However, different values of 	0

and 	A (low-	a and high-	a cases) generated substantial changes
on the performance of some methods as explained below.

Age composition estimation
Data gaps (length bins without age information) were generally

scarce for the pooled ALK; however, data gaps were common in
the annual ALKs (Fig. S21), especially for larger lengths. Regarding
the GAM, diagnostic plots, which test the distribution assumption,
constant variance, and distribution of residuals, confirmed that the
Tweedie distribution outperformed a Gaussian distribution (Figs. S10–
S111); therefore, we retain results assuming the former. The exclusion of
location (lonj, latj) of the independent variables for GAM and CRL
for the No S – No T scenario did not vary our results; therefore, we
present results including them.

Fig. 3. Abundance-at-age estimation (ĉa) per haul by the four evaluated methods for a single length (l), year, and sampling station. Pooled and
annual age–length key (ALK): uses length, abundance-at-length (ĉl), and an ALK as the age assignment method (see eq. 1). Generalized additive
model (GAM): in addition to l and ĉl, uses longitude and latitude (lon and lat, respectively) information to implement the age assignment
method (GAM model), where â is the predicted age (see eq. 2). Continuation ratio logit (CRL): the age assignment method is the CRL model,
and p̃a are the predicted proportions (see eq. 3). J and A* are the minimum and maximum estimable ages, respectively.
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CRL was the most robust method to estimate age compositions
for both scenarios (No S – No T and S–T) and cases (low-	a and
high-	a) (Table 2). When the overlap of length distributions across
ages was low (low-	a case) and spatiotemporal variability in so-
matic growth was absent, the four methods led to small errors
(MSEtotal) with the CRL approach being the method that displayed
the lowest value and therefore best performance. Differences in
MREtotal values, a measure of bias, among methods were also
small for this scenario (<±5%). Bias for pooled ALK was slightly
positive (+3.24%), annual ALK bias was slightly negative (–4.71%),
and GAM and CRL biases were close to 0%. In contrast, results
changed drastically for the pooled ALK method when variability
in somatic growth was present; however, the other methods were
almost unaffected, reporting similar values in comparison with
the No S – No T scenario. Similarly, MREtotal values supported CRL
as the best method (�0%), the GAM model ranked second
(�1.75%), and the pooled ALK was the worst (+20.9%).

Nevertheless, the performance of the pooled ALK and GAM got
substantially worse when the overlap of length distributions
across ages increased (high-	a case; Table 2). Specifically, errors
(MSEtotal values) of these two methods were quite larger, and there
was also a small increase for annual ALK and CRL for both scenar-
ios. Likewise, there was a large positive bias (MREtotal) for the
pooled ALK, and this increased slightly for GAM in comparison
with the low-	a case. The annual ALK and CRL were quite robust in
comparison with the low-	a case for both scenarios.

We analyzed performance metrics by ages and year periods. For
both scenarios and cases, errors (MSEage) tended to be larger for
younger ages and decreased for older ages (Fig. 4 and Fig. S121).
Except for the No S – No T and low-	a cases, CRL and pooled ALK
exhibited the best and worst performance, respectively, for all
ages. Regarding biases (MREage), those were always larger for older
ages except for the CRL method, which displayed small biases for
all ages. Moreover, the annual ALK always tended to underesti-
mate proportions for older ages.

Examining these metrics by year period, the largest errors (MSEyear)
were normally observed for the pooled ALK excepting the No S –
No T and low-	a cases, which displayed comparable errors among
methods and year periods (Fig. 5 and Fig. S131). In terms of bias
(MREyear), the underestimation and overestimation observed for
the annual ALK and GAM models, respectively, were present for
all periods. CRL did not show substantial biases, while the magni-
tude of the bias for the pooled ALK increased for the last periods.

In summary, these results support the CRL model as the most
robust method to estimate age compositions across scenarios,
ages, and years and for different degrees of overlap of length
distributions among ages. The annual ALK ranked second in terms
of performance, while the GAM was substantially affected when
	a increased. On the other hand, the pooled ALK showed the worst
performance, producing quite large errors and biases.

Stock assessment model
Survey haul catches for Pacific cod (1994–2016) in the EBS

ranged from 0 to �400 individuals, although there were a few
outliers up to �6000 individuals. Length subsamples ranged be-
tween 4 and 112 cm, and the age subsamples ranged between 1 and
17. Age compositions estimated by the evaluated methods were
quite similar for younger ages; however, differences became

larger for intermediate and older ages (Fig. S141). Specifically, the
pooled ALK displayed substantial differences in population struc-
tures for some years (e.g., 1995, 1996, 2002, 2004, 2011, 2015, 2016),
when it did not seem to capture the variability across ages esti-
mated by other methods.

Stock assessment models incorporating these age composition
estimates reached convergence (positive defined Hessian and con-
vergence criterion: 1e–04). These models used the same input sam-
ple size for survey age and fishery length composition data;
therefore, observed differences are an exclusive consequence of
different age composition data. The stock assessment model that
included age compositions estimated using CRL (SS CRL) reported
the lowest NLL (Table 3) and therefore the best consistency with
other data. NLL by component showed that compositional data
(length and age compositions) were better fitted by SS CRL as well;
however, no substantial differences were found for indices of
abundance. The SS pooled ALK model displayed the highest NLL,
followed by the SS GAM model, results that agree with what we
observed in our simulation experiment. SSB and recruitment es-
timates showed quite similar trends for the SS CRL and SS annual
ALK. However, SSB values estimated by SS pooled ALK were gen-
erally larger, and recruitment estimates did not capture the vari-
ability observed for the other stock assessment models (Fig. 6).

Discussion
In this study, we implemented a simulation experiment to eval-

uate the performance of different methods applied in previous
studies to estimate age compositions of a fish population. We
showed, through two metrics, that the CRL approach is the most
precise and accurate for estimating age compositions. Annual
ALKs displayed quite good performance as well, both being meth-
ods quite robust to changes in the overlap of length distributions
among ages and variations in somatic growth. Moreover, the in-
corporation of age compositions estimated by CRL in the Pacific
cod stock assessment model resulted in a higher consistency with
other data inputs.

Age composition estimation
Our results demonstrate some shortcomings of classic methods

(ALKs) when estimating age compositions. When the sampling
effort is low or insufficient within a year, data gaps are abundant
in the age subsample. This missing information often leads to
fisheries scientists taking subjective and uncertain decisions to
fill these gaps (e.g., sharing data from adjacent years; Ailloud and
Hoenig 2019). A pooled ALK might help to avoid these issues;
however, it led to large errors and biases, especially for interme-
diate ages, as a consequence of sharing data from years with dif-
ferent somatic growth rates (S–T scenario). Moreover, these biases
were aggravated when the variation of size-at-age was increased
(high-	

a
case) regardless the variation in somatic growth. Aanes

and Vølstad (2015) also found serious biases in age composition
estimates when pooled ALKs were constructed for the Northeast
Arctic cod (Gadus morhua); therefore, we consider that this strategy
is not appropriate, especially when there is substantial variability
in somatic growth or there is no information about it.

Annual or year-specific ALKs might be a reasonable solution to
deal with pooled ALKs drawbacks, especially when the temporal

Table 2. Total mean square error (MSEtotal, ×10–5) and mean relative error (MREtotal) averaged across replicates.

No S – No T S–T

Pooled ALK Annual ALK GAM CRL Pooled ALK Annual ALK GAM CRL

Low-	a MSEtotal 2.83 2.71 3.13 2.43 127.6 3.77 2.63 2.5
MREtotal 3.24 –4.71 –0.28 0.12 20.9 –4 1.75 0.11

High-	a MSEtotal 151.73 5.36 30.68 5.07 249.4 5.93 29.38 5.12
MREtotal 25.42 –3.82 2.34 0.2 26.62 –3.3 5.13 0.33

Note: The best metric value per scenario and case is shown in bold.
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variability is substantial. However, although annual ALKs account
for changes in growth rates in time, their performance might still
be affected by the spatial variability in growth. Moreover, another
drawback of this method is that it introduces a considerable num-
ber of data gaps for larger lengths, possibly influenced by a

proportional age sampling design assumed in this study (see
Appendix B), which collects more data for lengths with higher
abundances in the length subsample (Quinn and Deriso 1999).
These data gaps are the main cause of the observed underestima-
tion in age proportions for older ages in both scenarios. Some

Fig. 4. Mean square error (MSEage, a measure of errors) and mean relative error (MREage, a measure of bias) per age for both scenarios for the
high-	a case. Metric values beyond the y axis limits are printed. [Colour online.]

Fig. 5. Mean square error (MSEyear, a measure of errors) and mean relative error (MREyear, a measure of bias) per period for both scenarios for
the high-	a case. Metric values beyond the y axis limits are printed. [Colour online.]
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authors have proposed strategies to deal with this problem
(Ailloud and Hoenig 2019; Hoenig et al. 2002; Isermann and
Knight 2005; Kimura and Chikuni 1987), for example, implement-
ing a combined classic-inverse ALK (an inverse ALK describes the
probability of length given age) into one likelihood function
(Ailloud et al. 2019). However, simpler strategies are normally
preferred, such as “borrowing” data from previous years exclu-
sively for these lengths; however, they can also lead to similar
consequences as we observed for the pooled ALK.

Although the GAM model reduced total bias over annual ALKs
in the low-	a case, it still displayed poor performance for age 5 and
older. We suspect that this was caused by predicting a single age
from length information and treating the response as continuous
when it is discrete, similar to previous studies (Puerta et al. 2019a,
2019b). Large errors for older ages appeared because there is a
higher overlap between length distributions at those ages. This
was confirmed when the overlap was increased (high-	a case),

where GAM showed a substantially worse performance for all
ages. Similar results were also found for the age slicing method,
which assigns a single age from length information using the von
Bertalanffy growth curve (Ailloud et al. 2015; Kell and Kell 2011).
We can conclude that methods that assign a unique age from
length information, such as the GAM in this study or the age
slicing method, may be inappropriate when a fish population has
a high overlap of length distributions among ages.

CRL was the most robust method in the simulation experiment.
This method accounts for spatial and temporal variability in the
model, and the response variable is proportions-at-age, so round-
ing decisions become unnecessary. CRL has been previously used
for different purposes and has shown promising results (Berg and
Kristensen 2012; Gerritsen et al. 2006; Kvist et al. 2000; Stari et al.
2010). CRL procedures outperformed ALKs when using fishery or
survey data (Berg and Kristensen 2012) and also have the benefit of
smoothing data gaps when age data are scarce for some lengths

Table 3. Negative log-likelihood (NLL) by component of stock assessment models (SS, Stock
Synthesiss) that incorporated age compositions estimated by the four evaluated methods.

Component SS pooled ALK SS annual ALK SS GAM SS CRL

Total 92.53 75.18 88.96 72.93
Catch 5.9e–13 0.0105e–13 0.06e–13 0.35e–13
Equilibrium catch 11.4e–05 6.3e–05 9.6e–05 6.8e–05
Survey –29.7 –40.7 –40.05 –40.15
Length composition 74.27 72.1 72.66 71.77
Age composition 76.32 61.83 71.26 59.43
Recruitment –29.23 –19.03 –16.08 –19.09

Fig. 6. Spawning biomass and recruitment time series estimated by stock assessment models (continuous lines) that incorporated age
compositions estimated by evaluated methods using Pacific cod data. Dots show the estimated value at a virgin state, and shaded areas are
95% confidence intervals estimated by the stock assessment model. [Colour online.]
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(Stari et al. 2010); therefore, data gaps are absent for large lengths.
However, it also has some issues related to data availability. For
instance, model convergence issues were found when an age older
than 8 was designated as the maximum estimable age. This was
due to age and length information being commonly scarce for
older ages, particularly if they are dominated by low-abundance
cohorts or if there is a low sampling effort. CRL cannot deal with
limited amounts of data and led to issues when estimating the
parameters of the GAM model. Similar problems might arise for
younger ages, which might be underrepresented in haul catches
due to selectivity effects. Therefore, we recommend using CRL for
data-rich scenarios.

Stock assessment model
One potential reason for the similar age composition estimated

by the four evaluated methods using Pacific cod survey data is that
the abundance-at-age was estimated per depth stratum defined by
NOAA scientists in the EBS (Conner and Lauth 2017) and then aggre-
gated to maintain consistency with its practical implementation.
This strategy is expected to produce more precise estimates of abun-
dances given the spatial distribution of fish abundance geographi-
cally and with depth (Wakabayashi et al. 1985), which can improve
estimates of age compositions regardless the age assignment pro-
cedure. A second potential reason is that the Pacific cod age sub-
samples were collected using a fixed strategy (i.e., collecting
otoliths for aging from a constant number of individuals that is in
some sense independent of the abundance in the catch; Quinn
and Deriso 1999) for most of the time series, which might lead to
smaller differences in age composition estimates across methods.
Nevertheless, these small differences may lead to improvements
in the performance of stock assessment models as demonstrated
by previous studies (Berg et al. 2014; Thorson and Haltuch 2019).

A simple approach such as system-based testing performed in
this study supported age composition estimated by CRL according
to the fit of the assessment model to that data as well as its con-
sistency with other data inputs in the Pacific cod stock assessment
model. A system-based testing examines the consistency among
different data inputs in a stock assessment model, and it has
principally been applied for CPUE data and involves evaluating
how different CPUE standardized time series fit with the pre-
dicted values by the model and how consistent they are with
ancillary data (Chang et al. 2017; Hinton and Maunder 2003). How-
ever, since likelihood functions are determined by observed or
input data, using NLL to directly compare and rank stock assess-
ment models that are based on different input data might not be
completely appropriate, and other alternatives should be con-
trasted. For instance, the ratio between input and effective sample
size of compositional data has been proposed to be a good indica-
tor to evaluate different compositional data sets (Thorson and
Haltuch 2019). Area of confidence ellipses, which compare uncer-
tainty of pairs of parameters conjunctly, also appears as an alter-
native and has been applied for abundance-at-age indices (Berg
et al. 2014).

The quality of a stock assessment is related to the quality and
quantity of the input data (Mace et al. 2001), which means that
more consistent data result in more certain stock assessment es-
timates (Berg et al. 2014). Age composition data are especially
informative for growth, recruitment, selectivity, and natural mor-
tality (Magnusson and Hilborn 2007; Maunder and Piner 2015),
and many stock assessment models are driven primarily by this
source of data (Francis 2011); therefore, there is a need to obtain
better estimates. Some efforts have been made to obtain more
precise age composition estimates using model-based approaches
(Berg et al. 2014; Maunder et al. 2020; Thorson and Haltuch 2019).
These novel approaches can be used conjunctly with CRL in future
studies, improving the entire estimation process. But there is also
a need to evaluate other effects ignored in this study, such as
aging imprecision, produced when scientists read otoliths or

other hard parts (Candy et al. 2012), or how the age subsample is
sampled: fixed or proportional (Quinn and Deriso 1999). The eval-
uation of these interacting factors might lead to a better under-
standing and improvement of the estimation of age composition
and therefore of stock assessment outputs.

Conclusions and future research
The CRL approach appears as a robust alternative to classic

approaches (ALKs) to estimate age compositions. While we fo-
cused on estimation in the face of spatiotemporal variability in
somatic growth, future studies could broaden the scope of our
inferences by evaluating the performance of these methods given
different life-history parameters, sampling strategies, spatial and
temporal variation in natural morality, and the strength of den-
sity dependence. It is also worth evaluating how fishery size-
specific selectivity might affect our results, since it may increase
mortality for larger individuals of an age class, producing a reduc-
tion of the mean length-at-age of that age class in time (Lee 1912).
Pacific cod age compositions estimated by the evaluated methods
did not substantially differ for younger ages, possibly influenced
by other factors related to the sampling strategy or the age com-
position estimation process. The use of age compositions esti-
mated by CRL in the stock assessment model resulted in better fits
and was more consistent with other data inputs. However, we
recommend using other approaches to evaluate consistency of
different input data sets for a stock assessment model. This study
demonstrates the feasibility of using model-based approaches as
CRL to estimate age composition and its application in stock as-
sessment models.
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Appendix A. Case study system
The eastern Bering Sea (EBS) continental shelf extends more

than 500 km eastward from the Alaskan coastline, with a steep
shelf break at the western boundary. The shelf is divided into
inner (<50 m depth), middle (50–100 m), and outer (100–200 m)
regions, considering bathymetry and oceanographic characteris-
tics (Coachman 1986; Stabeno et al. 2001). The cold pool is a water
layer <2 °C formed from winter sea ice, which induces cooling and
increases salinity and density of the surface water, particularly
affecting the EBS middle shelf domain (Stabeno et al. 2001). The
Pacific cod stock is an important groundfish species in the EBS
food web and is distributed along the entire continental shelf.
Researchers have observed spatial variation in size-at-age for this
species along a gradient from the inner to outer shelf, with differ-
ences up to 5 cm, caused in large part by the cold pool (Ciannelli
et al. 2020; Puerta et al. 2019b). Ciannelli et al. (2020) found that
size-at-age was highest through age 5 when age 1 cohorts experi-
ence average temperature from 1.5 to 2.5 °C, which agrees with
previous studies that conclude higher potential growth in age 0
cod for that range of temperatures (Hurst et al. 2018). Moreover,
there is also a temporal variation in size-at-age. For example, in-
dividuals at a given age were �6 cm smaller in 1994 than in 2016
(Ciannelli et al. 2020).

Appendix B. Sampling
We simulate a survey based on the EBS trawl survey (Conner

and Lauth, 2017) at the end of the first quarter of each year. We
model the sampling process separating encounter probability and
positive catch rates. The encounter probability component de-
fines the probability dl,a,i that catch for the sample station i
(349 stations in a survey; Fig. 2) in the location si and year y and for
the age a and length l is nonzero (Thorson et al. 2018):

Pl,a � Bernoulli(dl,a,i)

where

dl,a,i � 1 � exp(�wiS2aN l,a,si,y
)

where wi is the area swept by sample i (0.05 km2), Nl,a,s,y is a matrix
representing the abundance-at-length-at-age obtained from � l,a,si,y
and Na,si,y

, and S2a is the logistic selectivity-at-age of the survey
(S2a = 1 for a > 0).

The catch rates cl,a,i, in numbers of individuals, are simulated as

c l,a,i � �0 if Pl,a � 0
Poisson[rl,a,iexp(� l,a,i)] if Pl,a � 1

where �l,a,i accounts for variations in densities at fine spatial
scales and � l,a,i � Normal�0, 	c

2�, and 	c
2 is the variance of overdis-

persion. Moreover, the expected abundance when fish were en-
countered is

rl,a,i �
wiSaN l,a,si,y

dl,a,i

Therefore, the total number of individual fish caught in a sta-
tion si and year y is ci � 	l,a c l,a,i. For the length subsampling, the
number of individuals per length bin is c̃ l,i � 	a c l,a,i, and the total
number is c̃i � 	l,a c l,a,i.

For the age subsampling, we implement a proportional design
to sample ages, where the number of individuals selected for
aging for each length bin is proportional to its abundance in the
length subsample (Kimura 1977; Quinn and Deriso 1999). We ran-
domly select 95% of all stations (�332) to collect otoliths and
assume a maximum number of individuals sampled in a station
equal to 4. Since an individual with length bin l can have more
than one true age in the matrix cl,a,i, we specify that the probabil-
ity of a subsampled individual x in the length bin l being age a is
proportional to its abundance in the catch as

Pr(xl,i � a) �
c l,a,i

	a�0

A
c l,a,i

Finally, we are not assuming any source of aging error or bias
made by laboratory analyses. This approach reproduces age struc-
ture collections in the real EBS survey, and the age composition is
estimated using a design-based approach (Wakabayashi et al.
1985).
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